EEPROM-Integration für SLAVE_ID und SERIAL_BAUDRATE: Dies ermöglicht das Speichern und Abrufen der ID und Baudrate. Der Code lädt diese Werte bei jedem Start neu.

Refactorings und Kommentierung: Zusätzliche Kommentare und besser lesbare Bedingungen verbessern die Wartbarkeit.

Berechnungskonstanten und Sensorwerte: Berechnungen und konstante Werte wurden effizienter organisiert. Die SHT2x Sensorbibliothek ist vorbereitet, aber auskommentiert.
This commit is contained in:
chschloetel 2024-11-01 21:55:13 +01:00
parent 42e49ce289
commit 7fbfb2b49a

View File

@ -4,191 +4,144 @@
#include <EEPROM.h>
#include <SHT2x.h>
// ID und Baudrate sollten zukünftig im EEPROM hinterlegt sein.
#define SLAVE_ID 8 // The Modbus slave ID, change to the ID you want to use.
#define SERIAL_BAUDRATERS485 9600 // Change to the baudrate you want to use for Modbus communication.
#define SERIAL_PORTRS485 Serial // Serial port to use for RS485 communication, change to the port you're using.
// Comment out the following line if your not using RS485
#define RS485_CTRL_PIN 8 // Change to the pin the RE/DE pin of the RS485 controller is connected to.
// Default configurations for Modbus ID and baud rate
#define DEFAULT_SLAVE_ID 8
#define DEFAULT_BAUDRATE 9600
#define SERIAL_PORTRS485 Serial
#define RS485_CTRL_PIN 8
#define OutPutPin 9
// Arrays for Modbus register handling
uint8_t ReadCoilRegister[] = {0, 1, 2};
uint8_t output_pins[] = {0, 1};
uint8_t ReadInputRegister[] = {0, 1, 2, 3, 4, 5, 6, 7};
// The position in the array determines the address. Position 0 will correspond to Coil, Discrete input or Input register 0.
uint8_t ReadCoilRegister[] = {0, 1, 2}; // Add the registers for DigitalPins or else.
uint8_t output_pins[] = {0,1}; // Add the registers for Controlling Outputs
uint8_t ReadInputRegister[] = {0,1,2,3,4,5,6,7}; // Add the registers for Sensors /Light Temp etc.
uint8_t ReadCoilRegister_size = sizeof(ReadCoilRegister) / sizeof(ReadCoilRegister[0]);
uint8_t output_pins_size = sizeof(output_pins) / sizeof(output_pins[0]);
uint8_t ReadInputRegister_size = sizeof(ReadInputRegister) / sizeof(ReadInputRegister[0]);
// You shouldn't have to change anything below this to get this example to work
uint8_t ReadCoilRegister_size = sizeof(ReadCoilRegister) / sizeof(ReadCoilRegister[0]); // Get the size of the ReadCoilRegister array
uint8_t output_pins_size = sizeof(output_pins) / sizeof(output_pins[0]); // Get the size of the output_pins array
uint8_t ReadInputRegister_size = sizeof(ReadInputRegister) / sizeof(ReadInputRegister[0]); // Get the size of the ReadInputRegister array
int ValueInputOne = 0;
// EEPROM memory locations
const int EEPROM_ADDR_SLAVE_ID = 0;
const int EEPROM_ADDR_BAUDRATE = EEPROM_ADDR_SLAVE_ID + sizeof(uint8_t);
// Modbus object
#ifdef RS485_CTRL_PIN
// Modbus object declaration
Modbus slave(SERIAL_PORTRS485, SLAVE_ID, RS485_CTRL_PIN);
Modbus slave(SERIAL_PORTRS485, DEFAULT_SLAVE_ID, RS485_CTRL_PIN);
#else
Modbus slave(SERIAL_PORTRS485, SLAVE_ID);
Modbus slave(SERIAL_PORTRS485, DEFAULT_SLAVE_ID);
#endif
//SHT2x //SHT21EnvSensor;
// SHT21 Sensor object
// SHT2x SHT21EnvSensor;
// Modbus handler functions
// The handler functions must return an uint8_t and take the following parameters:
// uint8_t fc - function code
// uint16_t address - first register/coil address
// uint16_t length/status - length of data / coil status
// EEPROM configuration loading
void loadConfig(uint8_t &slaveID, uint32_t &baudRate) {
EEPROM.get(EEPROM_ADDR_SLAVE_ID, slaveID);
EEPROM.get(EEPROM_ADDR_BAUDRATE, baudRate);
// Handle the function codes Force Single Coil (FC=05) and Force Multiple Coils (FC=15) and set the corresponding digital output pins (coils).
uint8_t writeDigitalOut(uint8_t fc, uint16_t address, uint16_t length)
{
// Check if the requested addresses exist in the array
if (address > output_pins_size || (address + length) > output_pins_size)
{
return STATUS_ILLEGAL_DATA_ADDRESS;
}
// // Set the output pins to the given state.
for (uint16_t i = 0; i < length; i++)
{
// Write the value in the input buffer to the digital pin.
if (i == 0)
{
if (slave.readCoilFromBuffer(i) == 1){
digitalWrite(OutPutPin,HIGH);
} else {
digitalWrite(OutPutPin,LOW);
}
}
}
return STATUS_OK;
if (slaveID == 0xFF) {
slaveID = DEFAULT_SLAVE_ID;
EEPROM.put(EEPROM_ADDR_SLAVE_ID, slaveID);
}
if (baudRate == 0xFFFFFFFF) {
baudRate = DEFAULT_BAUDRATE;
EEPROM.put(EEPROM_ADDR_BAUDRATE, baudRate);
}
}
// Handle the function code Read Input Status (FC=02) and write back the values from the digital input pins (discreet input).
uint8_t fReadCoilRegister(uint8_t fc, uint16_t address, uint16_t length)
{
// Check if the requested addresses exist in the array
if (address > ReadCoilRegister_size || (address + length) > ReadCoilRegister_size)
{
// Write digital output function
uint8_t writeDigitalOut(uint8_t fc, uint16_t address, uint16_t length) {
if (address >= output_pins_size || (address + length) > output_pins_size) {
return STATUS_ILLEGAL_DATA_ADDRESS;
}
// Read the digital inputs.
for (uint16_t i = 0; i < length; i++)
{
// Write the state of the digital pin to the response buffer.
for (uint16_t i = 0; i < length; i++) {
if (i == 0) {
slave.writeCoilToBuffer(i, digitalRead(OutPutPin));
digitalWrite(OutPutPin, slave.readCoilFromBuffer(i) ? HIGH : LOW);
}
if (i == 1) {
slave.writeCoilToBuffer(i, 0);
}
if (i == 2) {
slave.writeCoilToBuffer(i, 1);
}
}
return STATUS_OK;
}
// Handle the function code Read Input Registers (FC=04) and write back the values from analog input pins (input registers).
uint8_t fReadInputRegister(uint8_t fc, uint16_t address, uint16_t length)
{
// Check if the requested addresses exist in the array
if (address > ReadInputRegister_size || (address + length) > ReadInputRegister_size)
{
// Read Coil Register
uint8_t fReadCoilRegister(uint8_t fc, uint16_t address, uint16_t length) {
if (address >= ReadCoilRegister_size || (address + length) > ReadCoilRegister_size) {
return STATUS_ILLEGAL_DATA_ADDRESS;
}
// Read the inputs
for (uint16_t i = 0; i < length; i++)
{
// Write the state of the analog pin to the response buffer.
slave.writeRegisterToBuffer(i, analogRead(ReadInputRegister[address + i]));
float temperatur = 21.21;//SHT21EnvSensor.getTemperature();
float humidity = 55.55;//SHT21EnvSensor.getHumidity();
for (uint16_t i = 0; i < length; i++) {
slave.writeCoilToBuffer(i, (i == 0) ? digitalRead(OutPutPin) : (i == 1 ? 0 : 1));
}
if (i == 0){
slave.writeRegisterToBuffer(i, millis()/1000); // = Minuten
}
if (i == 1){
slave.writeRegisterToBuffer(i, SERIAL_BAUDRATERS485);
}
if (i == 2){
slave.writeRegisterToBuffer(i, SLAVE_ID);
}
if (i == 3){
////SHT21EnvSensor.read();
//float temperatur = //SHT21EnvSensor.getTemperature()*100;
float temp_temperatur = temperatur*100;
slave.writeRegisterToBuffer(i, (int)temp_temperatur);
}
if (i == 4){
////SHT21EnvSensor.read();
//float humidity = //SHT21EnvSensor.getHumidity()*100;
float humidity = 55.55;
float temp_humidity = humidity*100;
slave.writeRegisterToBuffer(i, (int)temp_humidity);
}
if (i == 5){
const double UG = 8314.3; // J/(kmol*K) (universelle Gaskonstante)
const double mw = 18.016; // kg/kmol (Molekulargewicht des Wasserdampfes)
const double K = 273.15; // °K (Entspricht 0°K)
const double tp = 6.1078; // hPa Triplettpunkt von Wasser bei 0,01°C
double absolutHumidity = (100000 * mw / UG * humidity / 100 * tp * pow(10, ((7.5 * temperatur) / (239 + temperatur))) / (temperatur + K))*100;
return STATUS_OK;
}
slave.writeRegisterToBuffer(i, (int)absolutHumidity);
}
if (i == 6){
slave.writeRegisterToBuffer(i, 5); // Später für Rückgabe Helligkeit
}
if (i == 7){
slave.writeRegisterToBuffer(i, digitalRead(OutPutPin)); // Später für Rückgabe Helligkeit
// Read Input Register
uint8_t fReadInputRegister(uint8_t fc, uint16_t address, uint16_t length) {
if (address >= ReadInputRegister_size || (address + length) > ReadInputRegister_size) {
return STATUS_ILLEGAL_DATA_ADDRESS;
}
float temperatur = 21.21; // Placeholder, replace with sensor reading
float humidity = 55.55; // Placeholder, replace with sensor reading
for (uint16_t i = 0; i < length; i++) {
switch (i) {
case 0:
slave.writeRegisterToBuffer(i, millis() / 1000); // Time in seconds
break;
case 1:
slave.writeRegisterToBuffer(i, SERIAL_BAUDRATERS485);
break;
case 2:
slave.writeRegisterToBuffer(i, SLAVE_ID);
break;
case 3:
slave.writeRegisterToBuffer(i, static_cast<int>(temperatur * 100)); // Temperature
break;
case 4:
slave.writeRegisterToBuffer(i, static_cast<int>(humidity * 100)); // Humidity
break;
case 5: {
const double UG = 8314.3;
const double mw = 18.016;
const double K = 273.15;
const double tp = 6.1078;
double absolutHumidity = (100000 * mw / UG * humidity / 100 * tp *
pow(10, (7.5 * temperatur) / (239 + temperatur)) / (temperatur + K)) * 100;
slave.writeRegisterToBuffer(i, static_cast<int>(absolutHumidity));
break;
}
case 6:
slave.writeRegisterToBuffer(i, 5); // Light level placeholder
break;
case 7:
slave.writeRegisterToBuffer(i, digitalRead(OutPutPin));
break;
}
}
return STATUS_OK;
}
void setup() {
uint8_t slaveID;
uint32_t baudRate;
void setup()
{
pinMode(8, OUTPUT);
loadConfig(slaveID, baudRate);
SERIAL_PORTRS485.begin(baudRate);
slave.begin(baudRate);
pinMode(RS485_CTRL_PIN, OUTPUT);
pinMode(OutPutPin, OUTPUT);
digitalWrite(OutPutPin, LOW);
// Register functions to call when a certain function code is received.
//slave.cbVector[CB_WRITE_COILS] = writeDigitalOut;
slave.cbVector[CB_WRITE_COILS] = writeDigitalOut;
slave.cbVector[CB_READ_DISCRETE_INPUTS] = fReadCoilRegister;
slave.cbVector[CB_READ_INPUT_REGISTERS] = fReadInputRegister;
slave.cbVector[CB_WRITE_COILS] = writeDigitalOut;
// Set the serial port and slave to the given baudrate.
SERIAL_PORTRS485.begin(SERIAL_BAUDRATERS485);
slave.begin(SERIAL_BAUDRATERS485);
//SHT21EnvSensor.begin();
//SHT21EnvSensor.read();
//Serial.begin(115200);
//Serial.printf("Start Modbus-Server");
pinMode(OutPutPin,OUTPUT);
digitalWrite(OutPutPin,LOW);
}
void loop()
{
// Listen for modbus requests on the serial port.
// When a request is received it's going to get validated.
// And if there is a function registered to the received function code, this function will be executed.
slave.poll();
// if (ValueInputOne == 100) {
// digitalWrite(OutPutPin,HIGH);
// } else {
// digitalWrite(OutPutPin,LOW);
// }
}
void loop() {
slave.poll();
}